具有快速收敛的多项式离散规划的线性模型-黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女


  • 黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女

    具有快速收敛的多项式离散规划的线性模型

    2016.11.29

    投稿:龚惠英部门:理学院浏览次数:

    活动信息

    时间: 2016年12月14日 16:00

    地点: 校本部G508

    报告主题:具有快速收敛的多项式离散规划的线性模型
    报告人: 方述诚 教授 (美国北卡州立大学)
    报告时间:2016年12月14日(周三)16:00
    报告地点:校本部G508
    邀请人:白延琴
    主办部门:理学院数学系
    报告摘要:Optimization models involving a polynomial objective function and multiple polynomial constraints with discrete variables are often encountered in engineering, management and systems. Treating the non-convex cross-product terms is the key. State-of-the-art methods usually convert such a problem into a 0-1 mixed integer linear programming problem, and, then, adopt a branch-and-bound scheme to ?nd an optimal solution. Much e?ort has been spent on reducing the required numbers of variables and linear constraints as well as on avoiding unbalanced branch-and-bound trees. This talk presents a novel idea of linearizing the discrete cross-product terms in an extremely e?ective manner. Theoretical analysis shows that the new method signi?cantly reduces the required number of linear constraints from O(h3n3) to O(hn) for a cubic polynomial discrete program with n variables in h possible values. Numerical experiments also con?rm a two-order (102 times) reduction in computational time for randomly generated problems with millions of variables and constraints.

    欢迎教师、学生参加 !
    黑人巨大精品欧美_黑人巨大精品欧美黑寡妇_黑人巨大精品欧美一区二区_黑人巨大精品欧美一区二区免费_黑人巨大跨种族video_黑人巨大无码中文字幕无码_黑人巨茎大战俄罗斯美女_黑人巨茎大战俄罗斯美女